JAC Class 9 Maths Important Questions Chapter 2 बहुपद

Jharkhand Board JAC Class 9 Maths Important Questions Chapter 2 बहुपद Important Questions and Answers.

JAC Board Class 9th Maths Important Questions Chapter 2 बहुपद

प्रश्न 1.
बहुपद p(x) = 5x2 – 3x +7 में x 1 रखने पर बहुपद का मान होगा :
(A) 9
(B) 11
(C) 12
(D) 3
हल :
p(x) = 5x2 – 3x +7
x = 1 रखने पर,
P( 1 ) = 5 (1)2 – 3 ( 1 ) + 7
= 5 – 3 + 7 = 9
अतः सही विकल्प ‘A’ है।

JAC Class 9 Maths Important Questions Chapter 2 बहुपद

प्रश्न 2.
p(x) = 2x + 1 का एक शून्यक होगा :
(A) \(\frac {1}{2}\)
(B) 3
(C) –\(\frac {1}{2}\)
(D) 1
हल :
p(x) = 2x + 1
शून्यक होने के लिए p(x) = 0 होगा।
∴ 0 = 2x + 1 ⇒ x = – \(\frac {1}{2}\)
अतः सही विकल्प ‘C’ है।

प्रश्न 3.
x4 + x3 – 2x2 + x + 1 को x – 1 से भाग देने पर प्राप्त शेषफल होगा :
(A) 0
(B) 2
(C) 1
(D) – 2
हल :
p(x) = x4 + x3 – 2x2 + x + 1 को (x – 1) से शेषफल p (1) का मान (1) होता है।
∵ x – 1 = 0 ⇒ x = 1
p(1) = 14 + 13 – 2 (1)2 + 1 + 1
= 1 + 1 – 2 + 1 +1 = 2
अतः सही विकल्प ‘B’ है।

प्रश्न 4.
व्यंजक (x – 3) बहुपद
p(x) = x3 + x2 – 17x + 15
का गुणनखण्ड होगा, यदि :
(A) p(3) = 0
(B) p(-3) = 0
(C) P(-3) = 0
(D) p(-3) = – 3
हल :
p(x) = x3 + x2 – 17x + 15
(x – 3), p(x) का एक गुणनखण्ड है, तो
x – 3 = 0, x = 3
अत: सही विकल्प ‘A’ है।

JAC Class 9 Maths Important Questions Chapter 2 बहुपद

प्रश्न 5.
x3 – y3 का एक गुणनखण्ड है:
(A) x + y
(B) x2 + y2
(C) x2 – xy + y2
(D) x – y
हल :
x3 – y3 के गुणनखण्ड
= (x – y) (x2 + xy + y2)
एक गुणनखण्ड (x – y) है। अतः सही विकल्प ‘D’ है।

प्रश्न 6.
x4 + 8x का एक गुणनखण्ड है:
(A) x + 2
(B) x – 2
(C) x + 8
(D) x2 + 2x + 2
हल :
x4 + 8x = x(x3 + 8)
= x[(x)3 + (2)3]
= x(x + 2) (x2 – 2x + 4)
एक गुणनखण्ड (x + 2) है अतः सही विकल्प ‘A’ है।

प्रश्न 7.
x3 – 8 का एक गुणनखण्ड है:
(A) x + 2
(B) x – 4
(C) x2 + 2x + 4
(D) x2 – 2x – 4
हल :
x3 – 8 = (x)3 – (2)3
= (x – 2) (x2 + 2x + 4)
एक गुणनखण्ड (x2 + 2x + 4 ) है अतः सही विकल्प ‘C’ है |

JAC Class 9 Maths Important Questions Chapter 2 बहुपद

प्रश्न 8.
3y3 + 8y2 – 1 का पूर्णांक शून्य है :
(A) 1
(B) – 1
(C) 0
(D) विद्यमान नहीं
हल :
3y3 + 8y2 – 1 का पूर्णांक शून्य है।
y = 1 रखने पर, 3(1)3 + 8(1)2 – 1
= 3 + 8 – 1 = 10 ≠ 0
y = – 1 रखने पर, 3(-1)3 + 8(-1)2 – 1
= – 3 + 8 – 1 = 4 ≠ 0
y = 0 रखने पर, 3(0)3 + 8 × (0)2 – 1
= – 1 ≠ 0
अतः व्यंजक में के स्थान पर 1, – 1 और 0 रखने पर शून्य नहीं आता है।
अतः सही विकल्प ‘D’ है।

प्रश्न 9.
सत्यापित कीजिए कि 2 और 0 बहुपद x2 – 2x के शून्यक हैं।
हल:
p(x) = x2 – 2x
p(2) = 22 – 2(2)
p(2) = 4 – 4 = 0
एवं p(0) = 0 – 0 = 0
अतः 2 और 0 दोनों ही बहुपद x2 – 2x के शून्यक हैं। इति सिद्धम्

प्रश्न 10.
जाँच कीजिए कि बहुपद
q(t) = 4t3 + 4t2 – t – 1, 2t + 1 का एक गुणज है।
हल :
बहुपद q(t), 2t + 1 का गुणज केवल तब होगा जब 2t + 1 से q(t) को भाग देने पर शेषफल शून्य आता हो ।
∴ 2t + 1 = 0
t = – \(\frac {1}{2}\)
\(q\left(-\frac{1}{2}\right)=4\left(-\frac{1}{2}\right)^3+4\left(-\frac{1}{2}\right)^2-\left(-\frac{1}{2}\right)\) – 1
= – 4 × \(\frac {1}{8}\) + 4 × \(\frac {1}{4}\) + \(\frac {1}{2}\) – 1
= – \(\frac {1}{2}\) + 1 + \(\frac {1}{2}\) – 1 = 0
अतः 2t + 1 दिए गये बहुपद q(t) का एक गुणज है।

JAC Class 9 Maths Important Questions Chapter 2 बहुपद

प्रश्न 11.
सिद्ध कीजिए कि 5, बहुपद 2x3 – 7x2 – 16x + 5 का शून्यक है।
हल :
5 बहुपद 2x3 – 7x2 – 16x + 5 का शून्यांक है। बहुपद में x = 5 रखने पर,
2x3 – 7x2 – 16x + 5 = 2(5)3 – 7(5)3 – 16(5) + 5
= 2 × 125 – 7(25) – 80 + 5
= 250 – 175 – 80 + 5
= 255 – 255 = 0
∵ x = 5 रखने पर बहुपद का मान शून्यक प्राप्त होता है।
अतः 5 बहुपद का पूर्णांक शून्यक होगा। इति सिद्धम्

प्रश्न 12.
a के किस मान के लिए बहुपद x3 + 2x2 – 3ax – 8 में व्यंजक (x – 4) का पूरा-पूरा भाग जाता है?
हल :
बहुपद में x – 4 का भाग देने पर शेषफल f(4) प्राप्त होगा।
f(x) = x3 + 2x2 – 3ax – 8 में x के स्थान पर 4 रखने पर
f(4) = (4)3 + 2(4)2 – 3a(4) – 8 = 0
= 64 + 2 × 16 – 12a – 8 = 0
= 64 + 32 – 12a – 8 = 0
= 96 – 12a – 8 = 88 – 12a = 0
⇒ 12a = 88
∴ a = \(\frac {88}{12}\) = \(\frac {22}{3}\)
अतः a = \(\frac {22}{3}\)

प्रश्न 13.
यदि x2 + \(\frac{1}{x^2}\) = 48 हो तब (x + \(\frac {1}{x}\)) का मान ज्ञात करो ।
हल :
सूत्र से,
JAC Class 9 Maths Important Questions Chapter 2 बहुपद - 1

JAC Class 9 Maths Important Questions Chapter 2 बहुपद

प्रश्न 14.
यदि x3 + a3 में x + a का भाग दिया जाए, तो शेषफल ज्ञात कीजिए ।
हल:
JAC Class 9 Maths Important Questions Chapter 2 बहुपद - 2
∴ शेषफल = 0

प्रश्न 15.
(2x + 3)3 + (3x – 2)3 – (5x + 1)3 क गुणनखण्ड कीजिए।
हल :
माना
2x + 3 = a
3x – 2 = b
– (5x + 1) = c
अब a + b + c = (2x + 3) + (3x – 2 ) – (5x + 1)
= 2x + 3 + 3x – 2 – 5x – 1
= 5x – 5x + 3 – 3 = 0
सर्वसमिका a3 + b3 + c3 = 3abc
a, b तथा c के मान रखने पर
(2x + 3 )3 + (3x – 2)3 – (5x + 1 )3
= 3 × (2x + 3) × (3x – 2) × [- (5x + 1) ]
= – 3 (2x + 3) (3x – 2) (5x + 1).

प्रश्न 16.
सिद्ध कीजिए कि x2 + 6x + 15 का कोई शून्य नहीं होता।
हल :
माना कि f(x) = x2 + 6x + 15
∴ f(x) = {x2 + 2 (3)x + 9} + 6
= (x + 3)2 + 6
यहाँ x के प्रत्येक वास्तविक मान के लिए (x + 3)2 का मान कभी भी ऋणात्मक नहीं हो सकता। अतः (x + 3)2 का मान सदैव शून्य से बड़ा ही रहेगा। परिणामस्वरूप f(x) का मान भी 6 या उससे अधिक होगा।
इसलिए (x) का कोई शून्य विद्यमान नहीं है।

JAC Class 9 Maths Important Questions Chapter 2 बहुपद

प्रश्न 17.
गुणनखण्ड कीजिए:
(i) x3 – 64
(ii) (2x – 1)3 – (x – 1)3
हल :
(i) x3 – 64 = (x)3 – (4)3
∵ a3 – b3 = (a – b) (a2 + ab + b2)
∴ (x – 4) [(x)2 + (x)(4) + (4)2]
= (x – 4) (x2 + 4x + 16)

(ii) (2x – 1)3 – (x – 1)3
= [(2x – 1) – (x – 1)] [(2x – 1)2 + (2x – 1) (x – 1) + (x – 1)3]
= x[4x2 – 4x + 1 + 2x2 – 3x + 1 + x2 – 2x + 1]
= x(7x2 – 9x+3).

प्रश्न 18.
(3a + 4b + 5c)2 को प्रसारित रूप में लिखिए।
हल :
सर्वसमिका (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz +2zx
(3a + 4b + 5c)2 = (3a)2 + (4b)2 + (5c)2 + 2(3a)(4b) + 2 (4b) (5c) + 2 (5c) (3a)
= 9a2 + 16b2 + 25c2 + 24ab + 40bc + 30ac.

प्रश्न 19.
4x2 + y2 + z2 – 4xy – 2yz + 4xz को गुणनखण्ड कीजिए।
हल :
(2x)2 + (y)2 + (z)2 + 2(2x)(-y) + 2(- y)(z) + 2(2x)(z)
सर्वसमिका (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
= [2x + (-y) + z]2
= (2x – y + z)2
= (2x – y + z) (2x – y + z).

JAC Class 9 Maths Important Questions Chapter 2 बहुपद

प्रश्न 20.
उपयुक्त सर्वसमिकाएँ प्रयोग करके, निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए :
(i) (104)3
(ii) (999)3
हल :
(i) यहाँ (104)3 = ( 100 + 4)3
=(100)3 + (4)3 + 3(100)(4)(100 + 4)
[सर्वसमिका (a + b)3 = a3 + b3 + 3ab (a + b)]
= 1000000 + 64 + 124800 = 1124864.

(ii) यहाँ (999)3 = ( 1000 – 1)3
= (1000)3 – (1)3 – 3(1000)(1)(1000 – 1)
[सर्वसमिका a3 – b3 = a3 – b3 – 3ab (a + b)]
= 1000000000 – 1 – 2997000
= 997002999.

प्रश्न 21.
8x3 + 27y3 + 36x2y + 54xy – 2 के गुणनखण्डन कीजिए।
हल :
दिए हुए व्यंजक को इस प्रकार लिखा जा सकता है:
(2x)3 + (3y)3 + 3(4x2)(3y) + 3(2x)(9y2)
[सर्वसमिका (a + b)3 = a3 + b3 + 3a2b + 3ab2)
= (2x)3 + (3y)3 + 3(2x)2(3y) + 3(2x)(3y)2
= (2x + 3y)3
= (2x + 3y) (2x + 3y) (2x + 3y).

प्रश्न 22.
(4a – 2b – 3c)2 का प्रसार कीजिए।
हल :
सर्वसमिका
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
∴ (4a – 2b – 3c)2 = [4a + (-2b) + (- 3c)]2
= (4a)2 + (-2b)2 + (- 3c)2 + 2(4a)(-2b) + 2(-2b) (- 3c) + 2 (-3c) (4a)
= 16a2 + 4b2 + 9c2 – 16ab + 12bc – 24ac.

JAC Class 9 Maths Important Questions Chapter 2 बहुपद

प्रश्न 23.
यदि (x – \(\frac {1}{x}\))2 = 5 तो(x2 – \(\frac{1}{x^2}\)) का मान ज्ञात करो ।
हल :
सूत्र,
(a – b)2 = a2 + 2ab – b2
(x – \(\frac {1}{x}\))2 = x2 + \(\frac{1}{x^2}\) – 2.x.\(\frac {1}{x}\)
5 = (x2 + \(\frac{1}{x^2}\)) – 2
∴ x2 + \(\frac{1}{x^2}\) = 7

प्रश्न 24.
प्रदर्शित कीजिए कि बहुपद x10 – 1 और x11 – 1 का एक गुणनखण्ड (x – 1) है ।
हल :
माना
p(x) = x10 – 1
तथा
q(x) = x11 – 1
(x – 1) गुणनखण्ड प्रदर्शित करने के लिए p(x) = 0, q(x) = 0 दिखाना पड़ेगा।
∴ p(x) = x10 – 1
p(1) = (1)10 – 1
P(1) = 1 – 1
P(1) = 0

तथा q(x) = x11 – 1
q (1) = (1)11 – 1
q (1) = 1 – 1
q(1) = 0
अत: (x – 1), बहुपद (x10 – 1) तथा (x11 – 1) का एक गुणनखण्ड है।

प्रश्न 25.
व्यंजक x8 – y8 के गुणनखण्ड कीजिए।
हल :
सर्वसमिका a2 + b2 = (a + b) (a – b) से, (x4)2 – (y4)2
= (x4 – y4) (x4 + y4)
= [(x2)2 – (y2)2] [x4 + y4]
(x2 – y2) (x2 + y2) (x4 + y4)
पुनः (x – y) (x + y) (x2 + y2) (x4 + y4)

JAC Class 9 Maths Important Questions Chapter 2 बहुपद

प्रश्न 26.
यदि (x2 + \(\frac{1}{x^2}\)) = 83 तो (x3 – \(\frac{1}{x^3}\)) का मान ज्ञात करो ।
हल :
JAC Class 9 Maths Important Questions Chapter 2 बहुपद - 3

प्रश्न 27.
व्यंजक (x12 – y12) के गुणनखण्ड कीजिए।
हल :
x12 – y12 = (x6)2 – (y6)2,
सर्वसमिका a2 – b2 = (a – b)(a + b)
= (x6 + y6)(x6 – y6)
= (x6 + y6) [(x3)2 – (y3)2]
= (x6 + y6) [x3 + y3] [x3 – y3]
सर्वसमिका a3 + b3 = (a + b) (a2 – ab + b2)
तथा a3 – b3 = (a – b) (a2 + ab + b2)
= (x6 + y6) [(x + y) (x2 – xy + y2) (x – y) (x2 + xy + y2)]
= [(x2)3 + (y2)3] [(x + y) (x – y) (x2 – xy + y2) (x2 + xy + y2)]
= (x2 + y2) (x4 – x2y2 + y4) (x + y) (x – y)(x2 – xy + y2)(x2 + xy + y2)
अतः x12 – y12 = (x + y) (x – y)(x2 + y2) (x4 – x2y2 + y4)(x2 – xy + y2)(x2 + xy + y2)

Leave a Comment